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Context: The LTEC Project

¡ LTEC = Learning Trajectories for 
Everyday Computing

¡ What big ideas in computer science 
should be addressed in K-5 curricula?

¡ How can we express them in ways 
that make sense to K-5 students and 
teachers?

¡ How should they grow across time?



Overview of Methods

Extract Learning Goals (LGs)

Keyword Searches
In this case: 
Debug, error, etc.

Synthesis

Ordering



In other papers…

¡ We shared an overall picture of our lit review:
¡ SIGCSE 2017: Learning Goals, Theorized vs. Researched

¡ We focused on the details of our LT process….
¡ ICER 2017: Sequence, Repetition, Conditionals

¡ We unpacked a specific LT and its construction…
¡ ICER 2018: Decomposition

¡ This paper & presentation focuses on:
¡ Articulating the unarticulated
¡ Early use of the LT for illustrative activity 

development
¡ Dimensions of practice as an organizing structure



"Determine that the algorithm 
produces the right answer 
(correctness).”

"Recognize when instructions 
do not correspond to actions."

Recognize "a problem with 
a current solution".

Consensus Goal:
Outcomes can be used 
to decide whether or 
not there are errors.

Synthesis

Learning Goals:

"determine if an artificial 
entity is behaving rationally"



Where to next?

¡ We can embed discussion of that CG in 
mathematics instruction.

¡ What could be addressed first in computing 
instruction? 

¡ The lit said:
¡ PK-K students engaged in trial-and-error refinement 

(if they realized there was a problem!) 
(Fessakis, Gouli, &Mavroudi, 2013; Flannery& Bers, 2013)

Outcomes can be 
used to decide 
whether or not 
there are errors.

Iterative 
refinement can 
help fix errors.

Activities live here!



What does this look like for 
elementary students?

Outcomes can be 
used to decide 
whether or not 
there are errors.

Iterative 
refinement can 
help fix errors.

G3: The Frog and The Fly

https://scratch.mit.edu/projects/216652633


Debugging Activity: 
Student Page (excerpt)

Note: Sample student work shown in magenta



Debugging Activity: 
Student Page

https://scratch.mit.edu/projects/216652633/editor/


Debugging Activity: 
Discussion Question(s)

Outcomes can be 
used to decide 
whether or not 
there are errors.

Iterative 
refinement can 
help fix errors.



¡Our trajectories are 
nonlinear.

¡Sorting by 
dimensions.

Ordering

Meta-
knowledgeActivity

(of the 
practice)

Other (?)



Dimension 1: Strategies for 
finding and fixing errors 

¡ This dimension collects activities of 
the practice.

¡Strategies in the literature include:
¡ Iterative refinement (trial & error)
¡ Using intermediate results
¡ Observing step-by-step execution
¡ Reproducing errors
¡ Addressing compile errors in order

¡What is missing?

Activity 
(of the 

practice)



Dimension 2: Types of Errors

¡This dimension collects 
metaknowledge of the practice.

¡Error types in the literature include:
¡Small errors (e.g., case errors)
¡Errors of omission

¡Again – what is missing? Meta-
knowledge



Dimension 3: Role of Errors in 
Problem Solving

¡This dimension is also metaknowledge 
of the practice, but includes an 
affective component.

¡Consensus goals include:
¡Errors can be helpful.
¡ Improvements can have

diminishing returns.
Other (?)



The Debugging trajectory

Dimension 1:
Strategies

Dimension 2: 
Types of Errors

Dimension 3:
Role of Errors
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ABSTRACT
Curriculum development is dependent on the following question:
What are the learning goals for a specific topic, and what are reason-
able ways to organize and order those goals? Learning trajectories
(LTs) for computational thinking (CT) topics will help to guide
emerging curriculum development efforts for computer science
in elementary school. This study describes the development of an
LT for Debugging. We conducted a rigorous analysis of scholarly
research on K–8 computer science education to extract what con-
cepts in debugging students should and are capable of learning.
The concepts were organized into the LT presented within. In this
paper, we describe the three dimensions of debugging that emerged
during the creation of the trajectory: (1) strategies for finding and
fixing errors, (2) types of errors, and (3) the role of errors in prob-
lem solving. In doing so, we go beyond identification of specific
debugging strategies to further articulate knowledge that would
help students understand when to use those techniques and why
they are successful. Finally, we illustrate how the Debugging LT
has guided our efforts to develop an integrated mathematics and
CT curriculum for grades 3–5.
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1 INTRODUCTION
Several school districts, including public schools in Chicago, New
York City, and San Francisco, have begun CS for All initiatives that
will bring computational thinking (CT) instruction to all students.
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The knowledge to create research-based curricula – namely what,
how, and when to teach CT material – is still emerging. There
exist two bodies of research literature to draw upon: one discussing
what CT concepts students should learn [2–4, 23, 37] and the other
exploring what students at different ages did learn through various
CT-related activities [14–16, 19, 21, 22, 33] This paper brings these
two bodies of work together to develop a learning trajectory (LT)
for the CT practice of debugging. Our research questions are:

• What debugging concepts should children be taught?
• How could those concepts be organized?
• What are reasonable orders for addressing those concepts?

We build on prior work synthesizing existing research into guid-
ance for practitioners and curriculum developers [10, 17, 18]. In
particular, we make the following contributions:

• Identification of specific learning goals for debugging.
• Identification of three dimensions of debugging that can be
used to organize those learning goals.

• Identification of literature that supports partial ordering of
the debugging learning goals.

The rest of the paper is organized as follows. First, we describe
related work. Next, we describe the methods we used to develop
the trajectory and present our LT for Debugging. Then we share
examples of how we have used the LT for curriculum development.
We end with a conclusion and discussion of limitations.

2 RELATEDWORK
We draw on three bodies of existing work: theory of learning trajec-
tories; empirical research on debugging; and research and syntheses
about CS in elementary school.

2.1 Learning Trajectories
The National Research Council [11] defines learning progressions
as "descriptions of the successively more sophisticated ways of
thinking about a topic that can follow one another as children learn
about and investigate a topic" (p. 214). Typically, a learning progres-
sion starts with knowledge that students are expected to bring to a
learning experience and ends with a societal norm of what students
should know. Between these endpoints are intermediate stages rep-
resenting progress toward the overall goal [5]. A less linear model,
called Pieces of Knowledge [24], expresses independent kernels of
knowledge that one could learn in any order, but that all must be
learned to gain full understanding of a concept.
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A related construct is a learning trajectory (LT), which Simon
[35] defines as a prediction of how learning might proceed via stu-
dents’ engagement in a particular activity. An LT has three parts:
(1) an overall learning goal, (2) a predicted pathway to the learning
goal (with periodic waypoints), and (3) instructional activities that
help students move along the path [8]. A key difference between a
learning progression and an LT is the latter’s attention to activities
[5]. This paper focuses on the first two components of our Debug-
ging LT, goals and pathways, because full discussion of activities is
beyond the scope of this paper. However, we acknowledge that the
draft version of the LT presented here will both shape and be shaped
by our ongoing curriculum development efforts. In the discussion,
we share one activity developed through use of the LT. In future
work, we will present results of tests of these activities and how we
used the results of the studies to refine and elaborate the LT.

As we developed this Debugging LT, we drew, in particular, on
the work of other researchers who have developed progressions for
disciplinary practices in science. In Schwarz et al.’s [32] work on
scientific modeling, the learning progressions are described not as
a single sequence of levels of understanding, but as a set of dimen-
sions of the practice. The dimensions of a practice are components
that are related, but can develop separately. Often, dimensions sep-
arate metaknowledge of a practice from the activities of a practice.
Schwarz et al.’s two dimensions of scientific modeling are scientific
models as tools for predicting and explaining and models change as
understanding improves. The first dimension roughly corresponds to
metaknowledge about the practice, and the second to the activity of
the practice. Following this work, we aimed to identify dimensions
of debugging, with at least one focused on metaknowledge and at
least one focused on activity . The dimensions that emerged from
our analysis are presented in Section 4.

2.2 Debugging
In a seminal study, Klahr and Carver [26] identified four stages of
debugging: Bug identification, or describing a discrepancy between
intended and actual program outcome; Program representation,
or thinking about the program structure to hypothesize possible
locations for the bug; Bug location, or inspecting the program at
hypothesized locations to search for errors; and Bug correction, or
making the correction. In this paper, we refer to this as an Observe
-> Hypothesize -> Modify -> Test cycle used to debug programs.

More recently, embodied pre-coding instruction in debugging
was found to be helpful, improving students’ confidence and abili-
ties to cope with errors [1]. A debugging game, Gidget, was created
for teens to learn debugging skills [27]. The environment scaffolded
the process of debugging by identifying the existence of a bug.

2.3 CT Learning Trajectories
Researchers have attempted to discover what CT concepts students
use successfully at different ages [14, 19, 34]. In addition, several
efforts have synthesized existing knowledge and research to guide
future curriculum development. The K-12 CS Framework [18] was
released in spring 2016, the CSTA released standards soon afterward
[17], and several states have used these documents to guide their
own standards development. In addition, we recently published LTs
for sequence, repetition, conditionals [31], and decomposition [30].

3 METHODS
Here we briefly describe our three phases of work, inspired by [10].

3.1 Identifying Learning Goals
We conducted a review of 108 articles [29] focused on computer-
science education found in the Educational Research Information
Center database, the Special Interest Group in Computer Science
Education (SIGCSE) conference proceedings, and the Innovation
and Technology in Computer Science Education (ITiCSE) confer-
ence proceedings using keywords such as "computational thinking,"
"computer science domains," and "computer science pedagogy," with
the additional signifiers "K–8," "K–5," and "K–12." We focused on
research published between 2006 and 2016. During this review, we
extracted debugging-related learning goals (LGs) mentioned by
the authors. For the purposes of this trajectory, a learning goal is
defined as any explicit statement or implicit endorsement of what
students can or should know or be able to do in relation to debugging.
Attention to both knowing (metaknowledge) and doing (practice-
based activity) was particularly important for learning goals related
to debugging (a practice), as described in Section 2.1.

As it was extracted, each learning goal was tagged with an ev-
idence type: student evidence if the goal was supported by work
with students, and theoretical evidence if not.

3.2 Synthesizing Consensus Goals
We next synthesized small collections of LGs that expressed simi-
lar ideas into consensus goals (CGs). The four authors (two with
computer science expertise and two with curriculum development
expertise) created independent groupings, then came to collabora-
tive agreement on the final set of CGs. Examples of groups of LGs
that were synthesized into single CGs are included in Section 4.1.

A cross-check was performed on all consensus goals with rele-
vant learning goals to ensure that the CGs aligned with the original
intent of the LGs. Each CG was then coded with its strongest ev-
idence type. That is, if at least one LG under a CG had student
evidence, the CG was coded as having student evidence. Otherwise,
it was coded as having theoretical evidence.

3.3 Connecting Consensus Goals
To begin organizing the CGs into pathways, we next identified
dimensions of debugging by looking for threads of CGs that could
be described independently of each other. Following the lead of
[32], we looked, in particular, for at least one dimension focusing on
metaknowledge (what students should know) and one focusing on
activity (what students should be able to do). We then organized the
CGs related to each dimension by increasing complexity. Ordering
was based on evidence from the source articles, the theoretical as-
sumption that trajectories should progress from knowledge familiar
to the student toward formalized disciplinary knowledge, and con-
sideration of hypothetical activities in which students might engage.
Orders were represented as arrows between CGs. As part of this
assembly process, we also identified suggested paths through the
trajectory for beginning, intermediate, and advanced students. We
acknowledge that our proposed pathways do not represent the only
way a student could learn these concepts. Rather than functioning
as a strict prescription, our arrows are intended to define possible
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learning pathways that allow students to learn gradually, build-
ing on their prior knowledge. Additionally, we note that because
much of the source literature involved students using block-based
(rather than text-based) languages, our ordering of goals is most
appropriate for students using graphical programming languages.

4 RESULTS
We now present the results of this process. We begin by delving
into the development of consensus goals. We then present the
learning trajectory itself with the description, literature evidence,
and rationale for the dimensions and connections between the CGs.

4.1 Consensus Goals
Eleven CGs were synthesized from 36 LGs – 25 with student sup-
port and 11 with theoretical support. Table 1 presents each CG,
along with a comment placing it in context, followed by one exam-
ple LG that influenced that CG and the number of LGs that were
synthesized into each CG.

To illustrate the process of synthesizing several LGs into one CG,
we show two examples. These two examples are chosen because
they illustrate the subtleties involved in creating CGs. The source
literature was consulted often to glean the context of individual
learning goals and remain true to their original intent.

Table 2 shows the three LGs that were synthesized into the
CG, "Errors can be caused by missing, as opposed to incorrect,
information within instructions." The evidence code for each goal
is given in parentheses after the goal text. This table illustrates one
way in which similarities between individual LGs were identified.
Most of the debugging LGs referred in some way to fixing code. To
create CGs, we gathered LGs that were similar in their description
of either what was to be fixed or how it was to be fixed. LG1–LG3
in Table 2 are examples of the former: they all refer in some way
to incompleteness of code. The presumed omission is what needs
to be fixed. The CG therefore refers to the idea that errors can be
caused by omission. These ideas of what needs to be fixed and how it
should be fixed correspond to the types of errors (D2) and strategies
(D1) dimensions of the LT described in Section 4.2.

Table 3 shows the six LGs that were synthesized into the CG,
"Iterative refinement can fix errors." In contrast to the focus on what
should be fixed in the CG in Table 2, this CG focuses on how errors
could be fixed. Table 3 includes LGs that exemplify different aspects
of the Observe -> Hypothesize -> Modify -> Test cycle of debugging
based on outcome. These seemingly independent learning goals are
tied together by a discussion within one paper [16] that describes
different methods students used to fix their code, and the skills that
led to different levels of success. This discussion of the different
skills as part of a single process led to the CG and the identification
of other LGs that address individual aspects of this cycle.

Note that the CGs are written to capture not the specific actions
or skills cited in the individual LGs, but rather the knowledge that
students need to perform those actions. We chose to word CGs in
this manner for two reasons. First, we felt that wording goals in
terms of understanding made the big ideas in the trajectory more
transparent for more audiences (e.g., teachers with varying CS/CT
experience). Second, understanding goals are less prescriptive than

specific action goals, and we hope this allows the trajectories to be
used flexibly for curriculum development.

4.2 Debugging Trajectory and Dimensions
Figure 1 depicts the Debugging LT. The four gray boxes are offline,
or "unplugged," CGs, whereas the seven white boxes are computer-
based CGs. A CG is marked as offline if the concept is general
enough to be applied in a setting outside of a computer program.
Information on the lower right corner of each box indicates the
number of LGs that were coalesced into this consensus goal and the
stronger type of evidence found for a CG (S for student evidence,
T for theoretical evidence). The code in the upper left corner of
most boxes (D1, D2, or D3) refers to the dimension on which the
CG appears. The dimensions are described later in this section.

The CGs are connected by 16 arrows, 5 of which are supported
by information extracted from the literature. The type of literature
support found for an arrow is also indicated as student-supported
(S) or theoretically-supported (T). Arrows without a letter label are
based on theoretical considerations, rather than literature evidence.

The Debugging trajectory begins with a foundational skill for in-
dependent debugging: the ability to recognize whether or not there
is an error. Literature suggests that without scaffolding (Section 5.1),
this is a prerequisite to successful debugging. Flannery and Bers
[16] described three groups of PK-K children programming a robot
to dance. One group had trouble evaluating whether current solu-
tions had problems or not. The two other, more advanced groups
recognized errors and attempted to fix them via trial-and-error
strategies, but had varying success. This evidence suggests that
understanding that there is an intended outcome for most tasks, and
being able to tell whether the actual outcome matches the intended
outcome, is critical to successful debugging.

From this starting point, the consensus goals were organized
into three dimensions, represented roughly from top to bottom in
Figure 1: (D1) strategies for finding and fixing errors, (D2) types of
errors, and (D3) the role of errors in problem solving. Dimension 1
largely focuses on activity, while dimensions 2 and 3 largely focus
on the metaknowledge that makes debugging activity meaningful,
akin to prior work in science [32].

4.2.1 D1: Strategies for finding and fixing errors. The first debug-
ging dimension (D1), strategies for finding and fixing errors, consists
of five debugging strategies discussed in the literature: iterative
refinement by trial and error, using intermediate results, observing
step-by-step execution, reproducing errors, and addressing compile
errors in order of appearance.

Research evidence suggests trial and error is the first debugging
strategy attempted by students. Both Flannery and Bers [16] and
Fessakis, Gouli, andMavroudi [15] found that PK-K children utilized
trial and error as their debugging strategy. In addition, trial and
error is the most direct use of the observed incorrect outcome,
taking the recognition of a bug a step farther to acknowledge that
the particular nature of the unexpected outcome can be used to
theorize what the problemmight be, make a change, and check if the
problem is fixed. Thus, iterative refinement is placed immediately
after the recognition of errors in the beginning strand, with the trial
and error strategy being the simplest form of iterative refinement.
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Table 1: The 11 Debugging Consensus Goals

Consensus Goal Comments Example Supporting LG No. of LGs
Outcomes can be used to decide Realizing there is an error is the first step to "Recognize when instructions do
whether or not there are errors. fixing it, and critically analyzing the outcome not correspond to actions." [2] 6

is a way to do it.
Iterative refinement can help fix This is the first step toward understanding that Make a hypothesis about the cause
errors. Observe -> Hypothesize -> Modify -> Test [26] of a problem. [6] 6

can be used to debug code.
Errors play a valuable role in This CG is particularly useful for young "[D]ebug understandings if their
problem solving. children who need to manage emotions. Errors instructions produce something 2

are normal and useful. unexpected"
Small errors can change Students should understand that programming "[U]nderstand that small errors"
outcomes. errors are often small (case changes, number of can change outcomes. [13] 4

iterations), despite their potentially large
effects.

Intermediate results can help This CG progresses from the idea of looking at Fix nearly complete code by
find and fix errors. the final result to recognize errors. Students "inserting wait blocks" to see 2

can also examine intermediate results. intermediate results. [33]
Step-by-step execution of This technique builds on the usefulness of "Desk-check a solution" by tracing
instructions can help find and intermediate results. by hand. [20] 6
fix errors.
Errors can be caused by missing, Distinguishing between ordering of "[D]ebug" or complete an existing
as opposed to incorrect, instructions, wrong arguments, and the program. [15] 3
information within instructions. absence of necessary instructions.
Reproducing a bug can help find This is advanced for K–8. The difference Reproduce an unexpected problem.
and fix it. between reproducing a bug and rerunning [36] 1

a program is subtle for young learners.
Compile errors should be fixed This CG is also advanced, as it is most "[F]ix a program that had errors"
in the order the compiler reports appropriate for text-based languages. identified by the parser. [21] 1
them.
Code can always be improved, This CG serves as a bridge between debugging "[M]anage their programming
but it may not be worth the effort. and quality – there is a fine line between bugs processes" by questioning "their 1

and elements that could be improved (e.g., decisions and actions" to reflect on
speed). debugging processes. [25]

Debugging techniques can be This is the capstone CG for debugging. Once Correct errors in a "systematic,
chosen strategically. students understand individual techniques, efficient manner" [36] 14

they should choose between them
strategically.

Table 2: Synthesis Example 1

LG1 Fix nearly complete code. [33] (S)
LG2 Identify "what [is ]lacking in instructions." [14] (S)
LG3 "[D]ebug" or complete an existing program. [15] (S)
CG Errors can be caused by missing, as opposed to

incorrect, information within instructions. (S)

Research literature did not provide insight into the relationship
between the remaining four debugging strategies, though there is a
similarity between the use of intermediate results and step-by-step
execution. Namely, the state of a program after each step is executed
is, in itself, an intermediate result. Thus, these two strategies are
linearly connected in the LT. Using intermediate results is located

Table 3: Synthesis Example 2

LG1 Attempt to solve a problem within a program. [16] (S)
LG2 Use "a trial and error model" to solve a problem. [15] (S)
LG3 Make a hypothesis about the cause of a problem. [16]

(S)
LG4 Test a theory about what is causing a problem in a

program. [27] (T)
LG5 Decide how to change a program when it does not

produce the desired results. [7] (S)
LG6 "Repeatedly change and run" buggy "code to find a

solution" [6] (S)
CG Iterative refinement can help fix errors. (S)
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Figure 1: The Debugging Trajectory

prior to step-by-step execution because step-by-step execution is a
particular strategy using intermediate results, whereas the notion
of using intermediate results could lead generally to other strategies
(such as removing the last half of the code and running it to see if
the bug is in the first half or last half of that script or function). The
other two strategies, reproducing bugs and addressing compiler
errors in order, are not related and so are located on separate paths.

Using intermediate results and step-by-step execution are con-
sidered intermediate concepts because they require more deliberate
thought than trial and error, but they are not considered advanced
because students can use them in any non-trivial program. Re-
producing an error is considered advanced because the need to
reproduce an error implies that the error does not necessarily al-
ways occur, and that step-by-step execution may not be a successful
strategy. This fact alone makes such bugs more difficult to identify
and fix than others. Addressing compile errors is considered ad-
vanced because students are more likely to begin with languages
such as Scratch [28] that are designed to avoid compile errors.

4.2.2 D2: Types of errors. The second dimension (D2), types of er-
rors, contains two types of errors: small errors, which may include
errors in punctuation, syntax, and case, and errors of omission,
which may include missing instructions or use of instructions that
lack the appropriate precision to communicate needed information.
There are fundamental differences in these two ideas. For example,
the cognitive act of scrutinizing existing code to find a small error is
different from the cognitive act of discerningmissing information or
steps. However, the research we reviewed did not provide evidence
of any dependence between these ideas, so they exist independent
paths in the LT. These CGs are in the intermediate strand, as op-
posed to beginner, because the trial-and-error debugging strategies
used by beginners do not suggest that novice students attend to the
differences in errors. They are on the intermediate path, as opposed

to advanced, because each was supported by at least one LG that
stemmed from work with students in grades 3–5 [14, 21, 33].

4.2.3 Role of errors in problem solving. The third dimension (D3),
the role of errors in problem solving, consists of only two CGs: under-
standing the value of errors in problem solving and assessing the
worth of improvements. The former is in the beginning strand, as
we consider this a powerful and pervasive idea that can be taught
in elementary classrooms outside of computing instruction. Young
children have trouble regulating their emotions, making it hard to
persevere when they encounter failure [12], so explicitly teaching
the prevalence and usefulness of errors could help young learners
the most, both generally and in the context of programming.

The latter CG is in the advanced strand and meant to address the
close relationship between fixing errors and making improvements
in quality and how to assess whether improvements are worth-
while. Very simple programs may have a "right answer," giving a
programmer a point at which to stop debugging. However, more
complex programs have many design decisions that have no single,
clear solution, and there becomes a subtle difference between a bug
and a desire to improve (e.g., improve performance or make the
interface easier to use).

The trajectory ends with the consensus goal "Debugging tech-
niques can be chosen strategically." This nexus is intended to cap-
ture the idea that one must deliberately choose a strategy based
on the problem at hand. This ability to choose between debugging
strategies and approaches is a more complex skill than learning the
individual ideas or strategies.

5 DISCUSSION
This trajectory is only a starting point. An LT consists of more
than the one-sentence consensus goals described in this paper
and suggested paths through them. Full details of our LT can be
found online [9]. Each consensus goal has an understanding goal
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(described in this paper) and an action goal. In addition, there are
example activities that move students from one consensus goal to
the next, building on the prior knowledge.

LTs can be used in several ways. They can serve as the basis of
experiments to verify or refute connections within the LT. However,
this LT’s most promising role is in curriculum development. We
first discuss its use in creating scaffolding that can allow curricula
to temporarily bypass specific CGs. Second, we discuss an example
of how it was used to create a lesson in an integrated mathematics
+ CT curriculum in order to explicitly teach debugging.

5.1 Guiding Scaffolding
The ordering within the learning trajectory is not intended to be
entirely prescriptive. Indeed, scaffolding and careful activity design
can allow for the consensus goals to be addressed in a different order.
For example, although the ability to recognize the presence an error
is listed first in the Debugging LT, a system or activity in which the
identification of the error is provided would allow students to learn
and practice some debugging skills without requiring the ability
to recognize or identify the specific errors (e.g., Gidget [27]). In
this case, however, the learning trajectory is very useful in guiding
what specific things must be provided by scaffolding in order to
allow students to be successful in later learning goals.

5.2 Guiding Activity Development
The LT also can guide activity development. The authors are de-
veloping an integrated mathematics + CT curriculum guided by
this and other LTs. This interdisciplinary endeavor began with the
identification of "anchor" activities in which CT concepts can be
used to support mathematics learning. The LTs were then used to
identify what necessary CT skills should be developed in order to
prepare students for the anchor activities. Activities were designed
to build the identified skills.

Here, we describe one activity for elementary school students,
developed with reference to the Debugging LT, but not yet pub-
lished by the authors. This activity is designed to explicitly teach
students to closely observe program execution and think critically
about what happened, corresponding to the consensus goals "Out-
comes can be used to decide whether or not there are errors." and
"Iterative refinement can help fix errors." While the latter goal can
encompass varying degrees of reasoning (from random changes to
well-thought-out changes), we are explicitly teaching students to
carry out the process in a methodical manner.

We designed this activity to teach debugging and repeat loops
within the mathematical context of representing fractions on a
number line. The primary task is to modify code in Scratch that
partitions a number line, so that a number line segment is divided
into four equal parts. The starting code uses move and stamp blocks
to divide a number line segment covering the interval 0 to 360
into four partitions of 50 units (with 160 left over). Students run
the program, observe, and record the outcome. They are asked to
identify what is wrong (partitions are too small, entire interval
is not partitioned), what block affected that (move), and whether
the current number of steps used as an argument in the move
block needs to be made smaller or bigger (bigger). They are then
prompted to choose a new number for the argument and repeat

the process until they find the correct number to accomplish the
four equal partitions (for this age group, large-number division
is not expected). Students are then asked to repeat the process of
finding the proper arguments to partition the number line into 6
equal parts, adjusting both the number of iterations in the repeat
loop and the number of steps in the move block.

The cognitive process of reasoning aboutwhatwaswrong, shown
in our Debugging LT, is discernable in this activity. Once students
observe and identify the problem (the parts are too small), they then
identify the block that caused it, hypothesize about what direction
they should take in fixing it, and make slight modifications to the
program to test their hypotheses. The process of debugging the
program is broken down into discrete steps (Observe >Hypothesize-
>Modify->Test) that even young children can handle. In future
studies, we plan to use activities such as this one to test whether,
for small children, making these steps explicit can help them be
successful in future debugging efforts. Preliminary field testing
has shown that 3rd and 4th grade students enjoy and successfully
engage with this activity in an elementary mathematics classroom
setting. Students even noted similarities with hypothesizing and
testing in science and suggested that they debug every time they
fix a problem, not just a program.

6 CONCLUSIONS AND LIMITATIONS
Here we present a learning trajectory related to the practice of
Debugging in CS/CT and present a description of the dimensions of
debugging represented in the trajectory. While the current version
of the Debugging trajectory includes all the particular strategies
and error types that were mentioned in the reviewed literature,
we do not imagine that these are a definitive list of what might be
taught in elementary CT curricula. As we reviewed the existing
CS/CT literature, we found the topic of debugging to be underrepre-
sented in comparison to other topics such as loops and conditionals.
As debugging is inherent to all practices of CS/CT, it is possible
that it has been overlooked or unrecognized as a separate concept,
especially during early introductions to CS/CT, where students may
expend more effort debugging than implementing newly learned
concepts. We hope that this trajectory signifies a more isolated and
targeted view of debugging practices in early CS/CT education.

Limitations of this LT are rooted in our specific focus on K-
8 students and the dominance of block-based languages in the
reviewed literature. It is likely that the grade level and specific
language and platform will influence student debugging practices.
This is especially interesting as students transition from block-based
languages, which are purposefully designed to prevent certain types
of errors, to text-based languages that will introduce students to
a new class of errors and debugging strategies. We expect that
additional strategies and types of errors will prove useful and merit
inclusion in this trajectory as more research is added to the field.
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